On the behavior of information theoretic criteria for model order selection of InSAR signals corrupted by multiplicative noise
نویسندگان
چکیده
The Akaike information criterion (AIC) and the minimum description length (MDL) are two well-known criteria for model order selection in the additive white noise case. Our aim is to study the influence on their behavior of a large gap between the signal and the noise eigenvalues and of the noise eigenvalue dispersion. Our results are mostly qualitative and serve to explain the behavior of the AIC and the MDL in some cases of great practical importance. We show that when the noise eigenvalues are not clustered sufficiently closely, then the AIC and the MDL may lead to overmodeling by ignoring an arbitrarily large gap between the signal and the noise eigenvalues. For fixed number of data samples, overmodeling becomes more likely for increasing the dispersion of the noise eigenvalues. For fixed dispersion, overmodeling becomes more likely for increasing the number of data samples. Undermodeling may happen in the cases where the signal and the noise eigenvalues are not well separated and the noise eigenvalues are clustered sufficiently closely. We illustrate our results by using simulations from the effective channel order determination area.
منابع مشابه
Model Order Selection in Multi-baseline Interferometric Radar Systems
Synthetic aperture radar interferometry (InSAR) is a powerful technique to derive three-dimensional terrain images. Interest is growing in exploiting the advancedmulti-baseline mode of InSAR to solve layover effects from complex orography, which generate reception of unexpected multicomponent signals that degrade imagery of both terrain radar reflectivity and height. This work addresses a few p...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملAdaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm
A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...
متن کاملIntroduction to a simple yet effective Two-Dimensional Fuzzy Smoothing Filter
Annihilation or reduction of each kind of noise blended in correct data signals is a field that has attracted many researchers. It is a fact that fuzzy theory presents full capability in this field. Fuzzy filters are often strong in smoothing corrupted signals, whereas they have simple structures. In this paper, a new powerful yet simple fuzzy procedure is introduced for sharpness reduction in ...
متن کاملSignal detection Using Rational Function Curve Fitting
In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 49 شماره
صفحات -
تاریخ انتشار 2001